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Abstract
An exactly solvable coupled channel scattering problem with SO(3, 1)

symmetry is presented describing the helicity scattering of a particle with
spin s. It is shown that the coupled channel wavefunction is a matrix-valued
function with definite group theoretical properties. The scattering phase shifts
are calculated for the special values of s = 1

2 , 1 and 3
2 and the result for general

s is conjectured. It is also demonstrated that for an algebraic description of
this coupled channel problem both of the independent Casimir operators are
needed.

PACS numbers: 03.65.-w, 02.20.Qs, 02.30.Gp

1. Introduction

The importance of symmetry principles embodied in group theoretical methods in theoretical
physics is well known. The spectacular success of symmetry groups, and their attendant
algebras in high-energy and elementary particle physics are the most obvious examples.
However, it is by no means such a common wisdom that spectrum generating groups and
algebras also are useful in the description of low-energy processes. Such group theoretic
methods were applied to bound-state problems [1] (of molecular and nuclear systems) in the
first instance. However, only after the advent of algebraic scattering theory (AST) did such
methods become relevant in studies of the scattering regime. AST successfully described
nonrelativistic scattering problems of a wide range by using noncompact symmetry groups [2]
and the method was generalized in principle to include coupled channel problems [3]; however,
some conceptual problems remained and such form the raison d’etre of this paper.

AST is a purely group theoretic method to specify the scattering matrix in the sense
that only the noncompact symmetry group G and its subgroup structure characterizing the
scattering process are needed as input. No explicit coordinate realizations of interaction terms
and channel potentials appear in this approach. The only assumption is that the scattering
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system is described by a Hamiltonian describable as a function of the quadratic Casimir
operator of G. With such a Hamiltonian the theory of group contractions and expansions
facilitates an explicit algebraic determination of the functional form of the scattering matrix.

However, with higher-rank groups there are diverse Casimir operators and the dynamical
role of such has been completely neglected in AST. In AST it has been assumed that the
scattering states are described merely by those unitary irreducible representations of G for
which the eigenvalues of these extra Casimir operators are zero. This restriction could be
deleterious as far as physical applications are concerned. Heuristically one can argue that
the additional labels provided by these extra Casimir operators might be used effectively to
label possible scattering channels in an intrinsically algebraic manner. The possible role of
the extra Casimir operators in this spirit has been emphasized in [4], suggesting an algebraic
characterization of some scattering channels for a multichannel process. But those studies,
contrary to the spirit of AST, employed an explicit coordinate realization, yielding explicit
interaction terms. In this presentation, we consider an explicitly solvable model to clearly
show the importance of abstract mathematical issues. To the best of our knowledge, in the
literature, no exactly solvable group theoretical model of this kind has appeared. Specifically
we introduce and solve a multichannel scattering model having SO(3, 1) symmetry. We show
that for this model expectations that the extra Casimir operators in fact provide essential new
labels characterizing the channel structure of the scattering problem are fulfilled. Our model
describes scattering of a particle having an intrinsic spin s in a helicity formalism.

In section 2 we introduce our particular form of realization for the SO(3, 1) algebra
providing the infinitesimal generators of the group SO(3, 1) with which there are two
independent Casimir operators. One of those Casimirs has the form of a ‘Schrödinger-like’
operator; the other is a ‘Dirac-like’ operator. In section 3 we study the asymptotic behaviour of
the scattering states characterized as eigenstates of these Casimir operators. Therein we also
identify the observables of the scattering process. The short-distance behaviour is investigated
in section 4, where we show that the dynamics in this limit is just the free dynamics in
R3. The relevant symmetry group is the Euclidean group E(3) arising as a contraction of
SO(3, 1). Detailed discussion of the coupled channel problem is given in section 5, while
the explicit solution of the eigenvalue problem for the Casimir operators in terms of known
special functions is presented in section 6. The special cases of spin 1

2 , 1 and 3
2 are studied in

detail in separate subsections. The asymptotic behaviour of the coupled channel wavefunction
is discussed in section 7. The scattering matrix is explicitly calculated for the cases s = 1

2 , 1
and 3

2 in section 8. Here the general form of the scattering matrix is also conjectured. The
conclusions are left for section 9. For the convenience of the reader we also have included two
appendices. In the appendix we explicitly check that the states obtained for the spin 1 case are
also eigenstates of the first-order Casimir operator.

2. A matrix-valued realization for SO(3, 1)

Defining coordinates xµ, µ = 0, 1, 2, 3 on the upper sheet of the double-sheeted hyperboloid
defined by

(x0)2 − (x1)2 − (x2)2 − (x3)2 = 1 x0 � 1 (1)

then SO(3, 1) (the proper orthochronous Lorentz group), acting on the coordinates as
xµ → �µ

ν xν with �µ
ν ∈ SO(3, 1), leaves invariant this hyperboloid. The infinitesimal

generators of this action,

Lj = −iεjklx
k ∂

∂xl
Kj = −i

(
x0 ∂

∂xj
+ xj ∂

∂x0

)
(2)
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satisfy the commutation relations of the SO(3, 1) algebra,

[Lj , Lm] = iεjmnLn [Lj , Km] = iεjmnKn

[Kj, Km] = −iεjmnL j, m, n = 1, 2, 3.
(3)

The generators L and K can be thought of as the ones generating infinitesimal rotations or
hyperbolic rotations (Lorentz transformations) respectively.

According to the results of [5] this realization of the SO(3, 1) algebra can be further
generalized by adding suitable matrix-valued modifications to the generators L and K. Let us
define S as the usual spin matrices representing a particle with spin s. They are (2s+1)×(2s+1)

matrices satisfying the commutation relations [Sj , Sk] = iεjklSl . Then it can be shown [5] that
the modified generators

J = L + S M = K +
1

1 + x0
S × x (4)

satisfy the same set of commutation relations i.e.

[Jj , Jm] = iεjmnJn [Jj , Mm] = iεjmnMn

[Mj, Mm] = −iεjmnJn j, m, n = 1, 2, 3.
(5)

Notice that the generators given in equation (4) are matrix-valued differential operators; the
geometric meaning of such generators was explained in [6]. There an explicit construction
was given for a particular choice of a semisimple Lie group G, and any subgroup H rendering
the coset G/H a symmetric space. Choosing an irreducible unitary representation D for H ,
and local coordinates for G/H , it was shown that the generators of the representation of G

induced by D are matrix-valued differential operators of the equation (5) form. Indeed, in this
case G = SO(3, 1), H = SO(3), D is the usual spin s representation, G/H is the upper sheet
of the double-sheeted hyperboloid.

Now we introduce polar coordinates

x = n sinh r x0 = cosh r n2 = 1 (6)

where

n(θ, ϕ) ≡ (sin θ cos ϕ, sin θ sin ϕ, cos θ). (7)

In terms of these new variables

M = −in
d

dr
− coth rn × J +

n × S

sinh r
. (8)

The components of L in terms of θ and ϕ are the usual ones well known from the literature.
It is important to stress however that we can have another way of looking at our

realization [5]. Let us regard our coordinates xµ ≡ (x0, x) as operators satisfying the constraint
xµxµ = 1 (indices are raised and lovered by the metric gµν ≡ diag(1, −1, −1, −1)). Then
the ten generators xµ, Nµν (µ, ν = 0, 1, 2, 3) where

Nij = εijkJk N0k = −Nk0 = Mk (9)

satisfy the commutation relations of the Poincaré algebra,

[xµ, xν] = 0 [Nµν, xσ ] = i(xµgνσ − xνgµσ ) (10)

[Nµν, Nρσ ] = i(gµσ Nνρ + gνρNµσ − gµρNνσ − gνσ Nµρ). (11)

The irreducible unitary representations of the Poincaré algebra are labelled by the eigenvalues
of the operators xµxµ (momentum squared), and W 2 = WµWµ of Wµ = 1

2 εµνσρNνσ Xρ (the
Pauli–Lubanski operator) related to the spin. A calculation shows that Wµ = (W0, W ) =
(x0J + M × x, Jx). Using the (4) form of the generators one can show that

W0 = Sx W = (x0 − 1)n(Sn) + S. (12)
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Using this we get W 2 = −S2, and Wµxν = 0 as it has to be. Notice also that W(x&) = (0, S),
where x&µ ≡ (1, 0, 0, 0). According to the representation theory of the Poincaré group (in
an irrep we have W 2 = −m2s(s + 1)I , and in our case the mass squared m2 ≡ xµxµ = 1),
we are given a series of unitary representations labelled as (1, s), s = 0, 1

2 , 1, . . . . Hence our
matrix-valued realization is a natural one for introducing spin degrees of freedom.

Let us now continue by transforming our realization to a form more suitable for our
purposes. First recall that J × n + n × J = 2in (i.e. n transforms as a vector operator
with respect to the rotation subgroup SO(3) of SO(3, 1)). Using this and the similarity
transformation

M → M ′ ≡ sinh rM
1

sinh r
(13)

transforms equation (8) to the form

J ′ = L + S M ′ = −in
d

dr
− 1

2
coth r(n × J − J × n) +

n × S

sinh r
. (14)

(For notational simplicity in the following we drop the prime from J and M .) Notice also
that the similarity transformation equation (13) is just the one needed to transform the measure
sinh2r sin θ dθ dϕ dr on the hyperboloid to the measure sin θ dθ dϕ dr . Equation (14) is a
realization in terms of matrix-valued differential operators expressed in terms of the spherical
polar coordinates (r, θ, ϕ). Moreover, the radial coordinate is contained only in M . Of course
the components of the operators given in equation (14) satisfy the commutation relations
equation (5). Moreover, the generators J , M are Hermitian operators with respect to the
scalar product, with the measure dµ = sin θ dθ dϕ dr .

Since SO(3, 1) is a group of rank two, we have two independent Casimir operators. They
are C1 = J2 − M 2 and C2 = JM = MJ . A straightforward calculation for C1 yields the
result [5]

C1 = d2

dr2
− 1 + (Sn)2 +

L2 + 4(SJ − (Sn)2)

4cosh2r/2
− L2

4sinh2r/2
. (15)

This form of the quadratic Casimir was used [5] to investigate just the spin 1
2 case. Therein

we seek to gain some insight into the higher-spin cases as well, hence we try to rewrite it in a
more instructive form. To do so it is useful to introduce a new set of Hermitian operators,

A = J2 − (Sn)2 B = S2 − (Sn)2 (16)

and

(1 = JS − (Sn)2 (2 = (S × n)J (17)

which satisfy commutation relations

[Sn, (1] = i(2 [(2, Sn] = i(1 [(1, (2] = (A + B)Sn (18)

and [A, Sn] = [B, Sn] = 0. One can also show that all these operators are Hermitian. The
commutation relations of equation (18) can be rewritten alternatively as

[Sn, (±] = ±(± [(+, (−] = 2(A + B)Sn (19)

by introducing the operators

(± = (1 ± i(2 (±† = (∓ (20)

which act as step operators for the eigenvalue of the operator Sn. In fact the algebra given by
equation (19), apart from the presence of the term A + B in one of the commutators, resembles
a usual su(2) algebra. However, although A + B commutes with Sn, it does not commute
with (±, so that this analogy can be taken no further.
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In terms of our newly introduced quantities, the Casimir operators take the form

C1 = d2

dr2
− 1 + (Sn)2 − A + B

sinh2r
+

2(1 cosh r

sinh2r
(21)

C2 = Sn

(
−i

d

dr

)
− (2

sinhr
. (22)

In the following sections we search for a group theoretical description of the eigenfunctions
of the operators of equations (21) and (22) amenable for a description of some nonrelativistic
scattering problem involving a scattered particle having an intrinsic spin s. In particular we
would like to obtain from the group theoretical information the explicit form of coupled channel
interaction terms, the coupled channel wavefunctions and the elements of the scattering matrix.
It is should be clear by now that this task can also be rephrased in terms of the representation
theory of the Poincaré group. Although the Poincaré group is the right group theoretical tool
for deriving covariant forms of relativistically covariant equations, here we merely look at
it as a mathematical means for describing exactly solvable nonrelativistic coupled channel
scattering problems. We will not pursue here the interesting possibility for constructing a
mathematical mapping between the relativistically covariant equations with mass equal to one
and arbitrary spin (the generalized Bargmann–Wigner equations) and our equations describing
multichannel scattering processes.

3. Asymptotic forms of the Casimir operators

We investigate the asymptotic behaviour of our Casimir operators C1 and C2. For this purpose
we take the limit r → ∞ to get

C1
∞ = lim

r→∞ C1 = d2

dr2 + (Sn)2 − 1 C2
∞ = lim

r→∞ C2 = Sn

(
−i

d

dr

)
. (23)

These operators, and others commuting with them, describe the physical situation
asymptotically. First notice that the operators J , S2 and Sn are mutually commuting, and
they also commute with the Casimir operators given in equation (23). Hence to give the
asymptotic description of the scattering states, we can use the commuting set of operators
(C1

∞, C2
∞, J2, J3, S2, Sn). In the following we describe the scattering situation with

quantum numbers corresponding to eigenvalues of these observables.
As a first step recall [5] that scattering states of a system having SO(3, 1) symmetry

can be labelled by the pair of quantum numbers (j0, j1) where j0 is purely imaginary and
j1 = 0, 1

2 , 1, 3
2 , . . . . Choosing a particular pair (j0, j1) from the above set amounts to

labelling the corresponding scattering state by a unitary irreducible representation of the
algebra SO(3, 1). Moreover, the numbers (j0, j1) are related to the eigenvalues of the Casimir
operators as follows [7]:

C1|j0j1〉 = (j0
2 + j1

2 − 1)|j0j1〉 C2|j0j1〉 = −ij0j1|j0j1〉. (24)

Of course an identical pair of equations should hold also for the asymptotic operators with the
asymptotic states |j0j1; jmsλ〉∞,

C1
∞|j0j1; jmsλ〉∞ = (j0

2 + j1
2 − 1)|j0j1; jmsλ〉∞ (25)

C2
∞|j0j1; jmsλ〉∞ = −ij0j1|j0j1; jmsλ〉∞ (26)

where the extra labels are ones corresponding to the remaining operators in the set
(C1

∞, C2
∞, J2, J3, S2, Sn). This means that we have also the equations

J2|j0j1; jmsλ〉∞ = j (j + 1)|j0j1; jmsλ〉∞ (27)

J3|j0j1; jmsλ〉∞ = m|j0j1; jmsλ〉∞ (28)
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and

S2|j0j1; jmsλ〉∞ = s(s + 1)|j0j1; jmsλ〉∞ (29)

Sn|j0j1; jmsλ〉∞ = λ|j0j1; jmsλ〉∞ (30)

where −s � λ � s. The physical interpretation of the eigenvalue λ is clear. It is the helicity
quantum number of the scattered particle with spin s.

Since we have an explicit coordinate realization, in the equations above instead of the
abstract ket vectors |〉∞ we could use the wavefunction

+∞
j0j1;jmsλ(r, θ, ϕ) ≡ 〈r, θ, ϕ|j0j1; jmsλ〉∞. (31)

The operators in these equations are (2s + 1) × (2s + 1) matrix-valued differential operators.
The matrices can be simultaneously diagonalized, by the transform that diagonalizes the matrix
Sn. That is achieved by using the unitary matrix

U(θ, ϕ) = e−iϕS3 e−iθS2 eiϕS3 ≡ Ds
λν(ϕ, θ, −ϕ) − s � λ ν � s (32)

where in equation (32) the second equality reveals the connection between our matrix U and
Wigner’s D function for spin s. The action on Sn gives

U †(θ, ϕ)SnU(θ, ϕ) = S3. (33)

This transformation diagonalizes the matrix-valued operator J as well, giving [8, 9]

J ′ ≡ U †JU = r × (p + A) + S3n = L + W (34)

where

A = 1

r(r + r3)

(−r2

r1

0

)
S3 W = 1

(r + r3)

(
r1

r2

0

)
S3. (35)

In these equations A is a diagonal matrix-valued vector potential containing (2s + 1) magnetic
monopole vector-potentials, where the pole-strength is just the helicity eigenvalue of Sn.
Notice also that although in these formulae we have used the vector r = rn, and the operator
p = −i∇r, the diagonal operator J ′ does not depend on r . It depends merely on n and solely
on the angular variables (θ, ϕ).

Thus the joint eigenfunctions of J2, J3, S2 and Sn are of the form

Djs

mλ(θ, ϕ) = Y(θ, ϕ)U(θ, ϕ)χs
λ (36)

where as usual

S2χs
λ = s(s + 1)χs

λ S3χ
s
λ = λχs

λ. (37)

The unknown functions Y satisfy the equations

J ′2Y = j (j + 1)Y J ′
3Y = mY. (38)

When each component of the diagonal matrix-valued differential equations, equation (38)
is written explicitly one finds defining equations of the so called monopole harmonics (see
e.g. [8]), that in terms of Wigner’s D-function are

Y(θ, ϕ) = D
j

λm(ϕ, −θ, −ϕ). (39)

Note however, that the allowed values for j are restricted by the particular helicity eigenvalue
λ being considered. This restriction is [8, 9]

j = |λ|, |λ| + 1, |λ| + 2, . . . . (40)
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Consider now equations (25) and (26) with the explicit form for the operators and common
eigenfunction given by equations (23) and (31). First by using equations (36) and (39) we can
write equation (31) in the form

+∞
j0j1;jmsλ(r, θ, ϕ) ≡ ψ∞

j0j1;jsλ(r)Djs

mλ(θ, ϕ). (41)

Then using the orthogonality of the functions Djs

mλ(θ, ϕ), the eigenvalue problems for the
functions ψ∞

j0j1;jsλ(r) can be written in the form(
d2

dr2 − j0
2 + (λ2 − j1

2)

)
ψ∞

j0j1;jsλ(r) = 0 (42)(
λ

d

dr
− j0j1

)
ψ∞

j0j1;jsλ(r) = 0 (43)

where −s � λ � s. By appropriately choosing the SO(3, 1) representations the components
of ψ∞

j0j1;jsλ(r) can be arranged in a 2s+1-dimensional matrix containing incoming and outgoing
plane waves multiplied by suitable amplitudes depending on s and j .

To demonstrate that arrangement first choose j0 = ik, where E = k2 is the scattering
energy. Next by restricting the label j1 by −s � j1 � s, in the indices λ and j1 ψ∞

j0j1;jsλ(r) is
a 2s + 1-dimensional matrix. Recall that the representations (ik, j1) and (ik, −j1) are mirror
conjugated; moreover, the representations (−ik, j1) and (ik, −j1) for j1 �= 0 are unitary
equivalent [7]. For j1 = 0 the representations (ik, 0) and (−ik, 0) are inequivalent. Hence by
allowing the values of j1 also to be negative, but k non-negative (as it has to be) we cover all
the irreps. The case j1 = 0 needs special care. But its special nature will indeed be reflected
in the formalism. In the following we assume that the scattering process is described by this
set of representations, which we label as

(j0, j1) = (ik, ν) k ∈ R+
0 − s � ν � s. (44)

In the following we use the shorthand notation

ψ∞
λν (r) ≡ ψ∞

kν;jsλ(r) − s � λ µ � s (45)

to emphasize the matrix character of our wavefunction, the columns of which are specified by
ν and belong to different irreducible unitary representations of SO(3, 1). In accordance with
the coupled channel formalism of quantum scattering theory this label can be used to specify
the different boundary conditions for the wavefunction describing the scattering process. To
proceed one further assumption is needed, namely that the coupled channel wave function (45)
satisfies

ψ∞
λν (r) = ψ∞

νλ(r) (46)

i.e. the corresponding matrix is symmetric. The justification of this assumption is given in the
next section, where the symmetry relation equation (46) will be proved for the entire ψλν(r),
not merely for its asymptotic form.

Equations (42) and (43) now are expressed in the 2s + 1-dimensional matrix form(
d2

dr2 + k2

)
ψ∞(r) = [ψ∞(r), S2

3 ] (47)

S3
d

dr
ψ∞(r) = ikψ∞(r)S3 (48)

where the diagonal matrix S3 selects the entries −s � λ � s (−s � ν � s) when S3 acts upon
the matrix ψ from the left (right). Taking the matrix transpose of equation (48) and by virtue
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of equation (46) we get d
dr

ψ∞S3 = ikS3ψ
∞. Multiplying this from the left, and equation (48)

from the right by S3 and then subtracting the two, gives

[ψ∞(r), S2
3 ] = 0 (49)

hence the term on the right-hand side of equation (47) vanishes. The solutions of equation (47)
are then linear combinations of incoming and outgoing plane waves. But there is more we
can show. Writing out equation (49) we get (λ2 − ν2)ψ∞

λν (r) = 0, which shows that the only
nonvanishing components of ψ∞

λν (r) satisfy the constraint λ = ±ν. Then from equation (48)
we have d

dr
ψ∞ = ±ikψ∞. Hence for λ �= 0

ψ∞
λ,±λ(r) = A±

jsλ(k)e±ikr λ �= 0. (50)

For λ = ν = 0 there is no restriction dictated by equation (48), whence one finds

ψ∞
00 (r) = A+

js0(k)eikr + A−
js0(k)e−ikr λ = 0. (51)

Hence the scattering problem described by our realization is a helicity scattering process. The
incident particle is one with spin s and a definite helicity with respect to its instantaneous
direction of motion, and suffers a helicity flip on beeing scattered. Our task is now to find the
amplitudes A±

jsλ(k) and to calculate the scattering matrix. But before solving the eigenvalue
problem of the Casimir operators (and from the asymptotic form determining the scattering
matrix) it is useful to investigate the short-distance limit as well.

4. The short-distance behaviour of the Casimir operators

The r → 0 limit for our generators J and M of equation (14) are

J0 ≡ lim
r→0

= J M 0 ≡ lim
r→0

= −in
d

dr
− 1

r
+

1

r
n × L. (52)

Here the facts that J × n + n × J = 2in (n is a vector operator with respect to J), and that
L = J − S have been used. Recalling that p = −in d

dr
+ 1

r
n × L, one can then find that

J0 ≡ lim
r→0

= J M 0 ≡ lim
r→0

= rp
1

r
. (53)

Now the operators p and J satisfy the commutation relations of the Lie algebra of the group
E(3), the Euclidean group in three dimensions, and so

[Jj , Jk] = iεjklJl [Jj , pk] = iεjklpl [pj , pk] = 0. (54)

Hence

[J 0
j , J 0

k ] = iεjklJ
0
l [J 0

j , M0
k ] = iεjklM

0
l [M0

j , M0
k ] = 0. (55)

Thus when performing the limit the e(3) algebra results as a contraction of the SO(3, 1) algebra.
This result is evident as for r → 0 we obtain the point with coordinates (x0, x1, x2, x3) =
(1, 0, 0, 0) on the double-sheeted hyperboloid. Hence in this case instead of a parametrization
of the upper sheet of the hyperboloid, we have a parametrization of its tangent plane at the
point (1, 0, 0, 0), which is isomorphic to R3, the three-dimensional Euclidean space.

It is well known that the Casimir operators of e(3) are p2, and Jp. Since pL = 0, we
expect that the short-distance form of our Casimir operators then can be expressed in terms of
the quantities p2 and Sp. This is indeed the case as can be seen also from the short-distance
limit of equations (21) and (22). Taking the limits r → 0 we get

C0
1 ≡ lim

r→0
C1 = d2

dr2 − 1 + (Sn)2 − A + B − 2(1

r2
(56)
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and

C0
2 ≡ lim

r→0
C2 = −iSn

d

dr
− (2

r
. (57)

By virtue of equations (16) and (17), A + B − 2(1 = L2, and (2 = S(n × L) − iSn, and
therefrom

C0
1 ≡ −rp2 1

r
− 1 + (Sn)2 C0

2 ≡ rSp
1

r
. (58)

Hence as we expected the e(3) Casimir operators appear in the short-distance limit as it has to
be.

Now let us consider the eigenvalue problems of our Casimir operators. The operators Sn

and Sp have the eigenvalues λ and λk respectively. From equation (48) and repeating the
reasoning in the following paragraph we can again conclude that equation (49) holds. Hence
the eigenvalue problem of C1 yields(

d2

dr2 + k2 − L2

r2

)
ψ0

kν;lsλ(r) = 0 (59)

which is just the usual differential equation of Bessel functions for all values of λ = ±ν

describing the free dynamics in R3.

5. The coupled channel problem

To find the solutions of the eigenvalue problems involving the original Casimir operators,
equations (21) and (22), first we need the matrix elements of the operators A + B, (1 and (2

in the basis given by the functions Djs

mλ(θ, ϕ) of equations (36) and (39). Consider the operator
(2 = (S × n)J . Using the transformation U(θ, ϕ) we get

(′
2 = U †(θ, ϕ)S × nU(θ, ϕ)J ′ (60)

where J ′ is given by equation (34). So to find the explicit form of the operator (′
2 we have to

calculate U †(θ, ϕ)S × nU(θ, ϕ). It is straightforward to show that

U †(θ, ϕ)S × nU(θ, ϕ) = E1S1 + E2S2 (61)

where the vectors E1 and E2 can be expressed in terms of the components of the unit vector
(n1, n2, n3) = (sin θ cos ϕ, sin θ sin ϕ, cos θ) by

E1 =



n1n2
1+n3

−1 + n2
2

1+n3

n2


 E2 =


 1 − n2

1
1+n3− n1n2

1+n3−n1


 . (62)

Then by using equation (34) for J ′, for (′
2 = (S1E1 + S2E2)J

′ we obtain

(′
2 = U †(2U = S2

(
L1 − n1

1 + n3
J3

)
− S1

(
L2 − n2

1 + n3
J3

)
. (63)

(Notice that J ′
3 = J3 = L3 + S3.) Moreover, since we have [(′

2, S3] = i(′
1 one finds

(′
1 = U †(1U = S1

(
L1 − n1

1 + n3

)
+ S2

(
L2 − n2

1 + n3

)
. (64)

Now consider the action of these operators on the functions

3
js

mλ(θ, ϕ) ≡ U †(θ, ϕ)Djs

mλ(θ, ϕ) = D
j

λm(ϕ, −θ, −ϕ)χs
λ. (65)
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Introducing the complex linear combinations, (′
± = (′

1 ± i(′
2, and rewriting them in terms

of θ and ϕ, we have to calculate the action of operators of the form

(′
±3

js

mλ(θ, ϕ) = ∓S±e∓iϕ

(
∂

∂θ
∓ cos θS3 − J3

sin θ

)
3

js

mλ(θ, ϕ). (66)

Since J3 = −i∂ϕ +S3 and the dependence of Wigner’s function D
j

λm on ϕ is given by the factor
ei(m−λ)ϕ we find J3D

j

λm = mD
j

λm. Recall that S3χ
s
λ = λχs

λ , and note that we have used the
Varshalovich convention [10] for Wigner’s D function. The result is

(′
±3

js

mλ(θ, ϕ) = ∓e∓iϕ

(
∂

∂θ
∓ λ cos θ − m

sin θ

)
D

j

λm(ϕ, −θ, −ϕ)(S±χs
λ). (67)

Furthermore identities given in [10] (see equations (4), (5) p 94) enable us to deduce that(
∂β ∓ M ′ − M cos β

sin β

)
DJ

MM ′(α, β, γ ) = ∓
√

(J ± M)(J ∓ M + 1)e∓iαDJ
M∓1M ′(α, β, γ ).

(68)

Then with α = ϕ, β = −θ , J = j , M = λ, M ′ = m and using

S±χs
λ =

√
(s ∓ λ)(s ± λ + 1)χs

λ±1 (69)

we finally get

(′
±3

js

mλ(θ, ϕ) =
√

(s ∓ λ)(s ± λ + 1)(j ∓ λ)(j ± λ + 1)3
js

mλ±1(θ, ϕ). (70)

The action of the operators A and B on Djs

mλ can be calculated easily given that [S2, U ] = 0,
from such the functions 3

js

mλ become simply the eigenvectors of A′ and B′ with eigenvalues
j (j + 1) − λ2 and s(s + 1) − λ2.

Finally the actions of the operators A, B, (± on the functions Djs

mλ(θ, ϕ) are

(±Djs

mλ(θ, ϕ) =
√

(s ∓ λ)(s ± λ + 1)(j ∓ λ)(j ± λ + 1)Djs

mλ±1(θ, ϕ) (71)

ADjs

mλ(θ, ϕ) = (j (j + 1) − λ2)Djs

mλ(θ, ϕ) (72)

BDjs

mλ(θ, ϕ) = (s(s + 1) − λ2)Djs

mλ(θ, ϕ). (73)

Hence in this basis the operators (± couple states of different helicity.
Now we recast the wavefunction in the form

+kν;jmsλ(r, θ, ϕ) ≡ ψk
js;λν(r)Djs

mλ(θ, ϕ) (74)

where the labelling follows the definitions given with equation (31). Moreover, the channel
wavefunctions ψk

js;λν(r) for the fixed values of k, j and s are square matrices labelled by the
pair of indices λν.

There are some properties of ψk
js;λν(r) to be defined. The first is the dimension of the

square matrix ψλν(r). As we will show the dimension is 2s + 1 when s � j , and 2j + 1 when
j < s. The second property to be proved is that this matrix is a symmetrical one, as was
assumed in the discussion of the asymptotic behaviour of our wavefunction. To clarify such
issues we have to understand the group theoretical meaning of ψk

js;λν(r).
To do so first we write down the eigenequations for ψλν(r). Using the explicit form

equations (21) and (22) in the basis as given by Djs

mλ we get(
d2

dr2 + k2 + a dS2
3 − Z − 2X cosh r

sinh2r

)
λλ′

ψλ′ν(r) = 0 (75)(
−iS3

d

dr
− Y

sinh r

)
λλ′

ψλ′ν(r) = kψλλ′(r)(S3)λ′ν . (76)
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Here

(Zψ)λν = (j (j + 1) + s(s + 1) − 2λ2)ψλν (77)

((X ± iY )ψ)λν =
√

(s ∓ λ)(s ± λ + 1)(j ∓ λ)(j ± λ + 1)ψλ±1ν (78)

a dS2
3ψ ≡ [S3, ψ] = (λ2 − ν2)ψ. (79)

Equation (75) is a ‘Schrödinger-like’ equation, describing a coupled channel scattering problem
with a (2s + 1)× (2s + 1) matrix-interaction term of −Z−2X cosh r

sinh2r
. According to equations (77)

and (78), this interaction term has a tridiagonal matrix form. Notice that this equation (apart
from the spin 1

2 case) is not a Schrödinger equation describing a single coupled channel
scattering problem, but rather an equation describing a collection of coupled channel scattering
problems. This can be seen from the presence of the term adS2

3ψ of equation (79) in (75),
although it vanishes when λ = ±ν, or λ = ν = 0. In section 2 we found that this restriction
physically means that we deal with a helicity scattering process. In light of this we can say
that equation (75) describes a collection of helicity scattering problems. This also means that
we should be able to reduce the tridiagonal form of the interaction term to a block-diagonal
form containing the 2 × 2 helicity blocks for λ = ±ν, and the 1 × 1 block for λ = ν = 0. We
postpone the discussion of this problem to a later section.

Now we turn back to a group theoretical description of the matrix ψ . First notice that
equation (75) has a form similar to(

d2

dθ2 −
(

J +
1

2

)2

+
M2 + M ′2 − 1

4 − 2MM ′ cos θ

sin2θ

)√
sin θ dJ

MM ′(θ) = 0 (80)

which is associated with the problem of the Casimir operator of the SO(3) algebra. Indeed
this equation derives from

J 2DJ
MM ′(α, β, γ ) = J (J + 1)DJ

MM ′(α, β, γ ) DJ
MM ′ = e−iMαdJ

MM ′(β)e−iM ′γ (81)

on using the explicit form [10] of J2 expressed in terms of (α, β, γ ) with β = θ , and then
employing a similarity transformation with

√
sin θ .

The essential difference between equations (80) and (75) is that matrices appear in
equation (75) instead of integers and half integers. Otherwise equation (75) seems to be
the hyperbolic analogue of equation (80). Moreover, both of these equations arise from the
eigenvalue problem of a quadratic Casimir operator. Equation (80) arises from the Casimir
of SO(3), while equation (75) arises from the Casimir of SO(3, 1). However, SO(3, 1) is
a noncompact algebra of rank two. Accordingly we have the possibility to describe also
scattering states by using a series of irreducible representations indexed by continuously
changing labels, and, as it is of rank two, we have an additional number (in our case it is
ν) to label the possible scattering channels besides k. Based on these observations, we expect
ψk

js;λν(r) to be a matrix-valued generalization of Wigner’s dJ
MM ′(θ) function. Here the notation

is very instructive. The upper index k (together with the lower index ν) of ψ labels the irrep of
SO(3, 1), likewise the upper index J of d labels the irrep of SO(3). The lower indices js label
the SO(3) basis in which the matrix elements are calculated. Likewise the lower indices MM ′

label the corresponding SO(2) basis vectors. However, in the SO(3, 1) case we have another
subalgebra—namely SO(2) ⊂ SO(3) ⊂ SO(3, 1). This accounts for the label λ tagging the
particular basis vectors within the irrep labelled by s. Note that we use the other SO(3, 1)

label ν as a subscript accompanying the SO(2) index λ. This is a convenient notation as the
matrix character of ψλν has to be reflected in the special behaviour of the SO(3, 1) label ν and
the SO(2) label λ under exchange. Then as

dJ
MM ′(θ) = 〈JM|e−iθJ2 |JM ′〉 (82)
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we seek to represent ψk
js;λν(r) similarly as

ψk
js;λν(r) = 〈kν; jλ|e−irM3 |kν; sλ〉. (83)

We have chosen the generator M3 since it commutes with J3 by virtue of equation (5).
Moreover, notice that instead of the pair (j, m) the pair (j, λ) is used in equation (83). Since
J ′

3 = J3 = L3 + S3, the eigenvalue m is related to λ by m = l + λ. Moreover, we know [7] that

(k, ν) =
∞⊕

j=|ν|
(j, m) (84)

meaning that in the restriction of the SO(3, 1) representation (k, ν) to SO(3), only those
representations occur for which j = |ν|, |ν| + 1, . . . . While the representation space is
infinite dimensional, it is built from the finite-dimensional representation spaces of SO(3).
According to equation (40) we have the additional restriction j � |λ|. Hence in order that
these restrictions be consistent, we assume s � j . In that case since |λ| � s and |ν| � s, both
of our restrictions are satisfied. Moreover, both of the SO(3) representations labelled by j

and s occur (with multiplicity one) in the irrep (k, ν) of SO(3, 1). Hence the matrix element
given by equation (83) makes sense.

It is important to recall how M3 acts on the basis |jλ〉 (a similar formula holds for |sλ〉 as
well.) The result [7] is

M3|jλ〉 =
√

j 2 − λ2cj |j − 1λ〉 + λaj |jλ〉 −
√

(j + 1)2 − λ2cj+1|j + 1λ〉 (85)

where

cj = i

j

√
(j 2 − ν2)(j 2 + k2)

4j 2 − 1
aj = kν

j (j + 1)
. (86)

In this equation interchange of the labels ν and λ does not change the action of M3. Thus for
j � s our wave-matrix ψk

js;λν(r) in the pair of indices λν is a (2s + 1) × (2s + 1) symmetric
matrix. If however, j � s, then −j � λ, ν � j , and the wave-matrix then is (2j +1)×(2j +1)

symmetric.
The foregoing considerations were built on the formal similarity between our channel

wavefunction ψk
js;λν(r) and Wigner’s dJ

MM ′ function. But we also must ensure that our

wavefunction (defined by equation (83)) satisfies equations (75) and (76). Since d
j

MM ′(θ)

can be expressed in terms of the Jacobi polynomials [10], a guess is that ψk
js;λν(r) can be

expressed in terms of a matrix-valued generalization of the (hyperbolic) Jacobi polynomials.
In that search the detailed review of [11] of matrix-valued special functions for the groups
SO(n, 1) is very useful. For example we have found that for n = 3 equation (75) is related to
the defining equation for the hyperbolic generalization of the matrix-Jacobi polynomials.

To be more specific consider equation (75). With a change of variable (ρ = cosh r) and
a similarity transformation by sinh r this can be written(

(ρ2 − 1)
d2

dρ2 + 3ρ
d

dρ
+ k2 − adS2

3 − Z − 2ρX

ρ2 − 1

)
P(ρ) = 0 (87)

where P(ρ) ≡ P(cosh r) is related to the wavefunction defined by equation (83) (for simplicity
here the indices have been omitted), by

ψ(r) = sinhrP(cosh r). (88)

This equation is precisely the hyperbolic analogue of equation (3) on p 426 of [11]. The function
P is the hyperbolic equivalent of the ‘Jacobi function with matrix indices’ as introduced in [11].
Hence our coupled channel wavefunction, given in equation (83), really satisfies equation (75).
Then since the corresponding differential operators (related to C1 and C2) commute it satisfies
equation (76) too.
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6. The coupled channel wavefunction

In the previous section the group theoretical meaning of our coupled channel wavefunction
solving equations (75) and (76) was established. Next we seek how to express the abstract
matrix wavefunction equation (83) in terms of conventional special functions. A scheme of
solving the matrix differential equation (87) was presented in [11]. That formulation used
notions of the theory of functions of ordered operators. Here we merely present the solution
of equation (87). Proofs are given elsewhere [11].

First fix the relationship between j and s to be j � s. The j � s case is a straightforward
rerun of the method outlined below. Next define new (2s + 1) × (2s + 1) matrices R and Q by
fixing their action as

R±?λν =
√

(j ± λ + 1)

(j ∓ λ)
(s ∓ λ)(s ± λ + 1)?λ±1ν R = 1

2 (R+ + R−) (89)

Q∓?λν = ik ∓ λ − 1

ik ± λ

√
(j ± λ + 1)

(j ∓ λ)
(s ∓ λ)(s ± λ + 1)?λ±1ν Q = 1

2 (Q+ + Q−). (90)

Notice that these matrices are related to X as defined in equation (78). We will need the spectral
projectors Ra and Qb a, b = −s, . . . , s of these matrices defined by

R =
s∑

a=−s

raRa Q =
s∑

b=−s

qbQb. (91)

Here ra and qb are the corresponding eigenvalues of the matrices R and Q. According to
theorem 1 on p 438 of [11], these nondegenerate eigenvalues are

ra = a qb = b a, b = −s, . . . , s (92)

which lie in the usual range −s � ra, qb � s. With them the spectral projectors can be
expressed as

Ra =
s∏

c=−s,c �=a

R − rcE

ra − rc

Qb =
s∏

c=−s,c �=b

Q − qcE

qb − qc

. (93)

The solution of equation (87) then follows. According to theorem 4 on p 430 of [11], that
solution can be expressed in the form

P(ρ) =
s∑

a,b=−s

RaQbCfra,qb
(ρ) (94)

where the functions f
kj
ra,qb

(ρ) satisfy the differential equation(
(ρ2 − 1)

d2

dρ2 + (3ρ + r − q)
d

dρ
− j (j + 1) + rq − ρ(jr + (j + 1)q)

ρ2 − 1
+ k2

)
f kj

r,q(ρ) = 0

(95)

(for simplicity the subscripts of r and q are left implicit). As was shown [11] this equation can
be reduced to that of the ordinary Jacobi polynomials, so that

f kj
raqb

(r) =
(

sinh
r

2

)j−qb
(

cosh
r

2

)j+qb

P
αab,βab

ik−j−1(cosh r) (96)

where

αab = j + 1
2 − 1

2 (ra + qb) βab = j + 1
2 + 1

2 (ra − qb) (97)
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and ρ = cosh r . C is a (2s + 1) × (2s + 1) numerical matrix [11], that we fix case by case to
ensure the symmetric character of ψ .

It is more convenient to express these functions in terms of the functions Bl
mn(cosh r),

the SO(2, 1) analogues of the usual SO(3) Wigner functions. The definitions and properties
of these functions are detailed in [12]. Of import here is that they satisfy the differential
equation [12] (

(ρ2 − 1)
d2

dρ2
+ 2ρ

d

dρ
− m2 + n2 − 2mnρ

ρ2 − 1
− l(l + 1)

)
Bl

mn(ρ) = 0. (98)

Comparing with equation (95) reveals that

Bl
mn(cosh r) =

(
sinh

r

2

)m−n (
cosh

r

2

)m+n

P
(m−n,m+n)
l−m (cosh r) (99)

or

f kj
raqb

(r) =
(

sinh
r

2

)1
2 (ra−qb−1) (

cosh
r

2

)1
2 (qb−ra−1)

B− 1
2 +ik

j+ 1
2 , 1

2 (ra+qb)
(cosh r). (100)

Thus using the relation equation (88), our wavefunction can be written in the form

ψk
js =

s∑
a,b=−s

RaQbC?kj
raqb

(r) − s � ra, qb � s (101)

where

?kj
raqb

(r) =
√

sinh r
(

tanh
r

2

)1
2 (ra−qb)

B− 1
2 +ik

j+ 1
2 , 1

2 (ra+qb)
(cosh r). (102)

For convenience in equation (101) the matrix indices of ψk
js;λν(r) carried by the matrices (Ra)λν

and (Qb)λν were left implicit.
To complete our solution as given by equations (101) and (102) Bl

mn(cosh r) can be
expressed in terms of the hypergeometric function [12].

Bl
mn = E(l − n + 1)

E(l − m + 1)(m − n)!

(
cosh

r

2

)m+n

×
(

sinh
r

2

)m−n

F
(
l + m + 1, m − l; m − n + 1; −sinh2 r

2

)
(103)

where it is understood that

l = − 1
2 + ik m = j + 1

2 n ≡ nab = 1
2 (ra + qb). (104)

Note that equation (103) is only valid for m � n [12]. However, according to our restriction
j � s and the definitions given in equation (104) this condition is satisfied.

Finally, note that our total matrix-valued coupled channel wavefunction, equation (101),
is regular at the origin, as it must be. Thus to have the explicit solution of the coupled channel
wavefunction, the only task left is to calculate the explicit form of the spectral projectors Ra

and Qb. We do so in the next three subsections for the particular choices of s = 1
2 , 1 and 3

2 .

6.1. The s = 1
2 case

This very special case has already been investigated previously [5]. However, it is also the
simplest case at hand, and so it is very instructive to consider this first as the clearest example
of how our construction works. The interaction term of the coupled channel problem can be
calculated by using the form of the matrices Z and X as specified in equations (77) and (78)
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respectively. The final result for the potential to be used then in the coupled channel Schrödinger
equation is

Vλν(r) =
(

(j+ 1
2 )2

sinh2r
− (j+ 1

2 ) cosh r

sinh2r

− (j+ 1
2 ) cosh r

sinh2r

(j+ 1
2 )2

sinh2r

)
. (105)

Then as adS2
3ψ = 0 the wavefunction sought is a solution of a Schrödinger equation with just

the matrix-valued interaction term of equation (105).
To proceed as s = 1

2 , the labels a, b can have the values ± 1
2 , and we have to calculate

the explicit form of the 2 × 2 matrices of R and Q. Using the definitions in equations (89)
and (90), these matrices are identical as are their eigenvalues, i.e.

R = Q =
(

0 1
1 0

)
r± 1

2
= ± 1

2 q± 1
2

= ± 1
2 . (106)

The spectral projectors of equation (93) then follow and are

R 1
2

= Q 1
2

= 1
2

(
1 1
1 1

)
R− 1

2
= Q− 1

2
= 1

2

(
1 −1

−1 1

)
. (107)

The projector properties are satisfied and so

R 1
2
Q 1

2
= R 1

2
R− 1

2
S− 1

2
= R− 1

2
R 1

2
Q− 1

2
= R− 1

2
Q 1

2
= 0. (108)

The total wavefunction as given by equation (101) then is

ψk

j 1
2
(r) =

∑
a,b=± 1

2

RaQb?
kj
raqb

(r) = R 1
2
?

kj
1
2

1
2
(r) + R− 1

2
?

kj

− 1
2 − 1

2
(r). (109)

Notice that in this case the restriction j � s covers all cases since |l − s| � j � l + s, so for
s = 1

2 , j � 1
2 in all cases. Finally from equations (101) and (102), the explicit form of our

coupled channel wavefunction is

ψk

j 1
2 ;λν

(r) = 1
2

√
sinh r


 B− 1

2 +ik

j+ 1
2 , 1

2
(r) + B− 1

2 +ik

j+ 1
2 ,− 1

2
(r) B− 1

2 +ik

j+ 1
2 , 1

2
(r) − B− 1

2 +ik

j+ 1
2 ,− 1

2
(r)

B− 1
2 +ik

j+ 1
2 , 1

2
(r) − B− 1

2 +ik

j+ 1
2 ,− 1

2
(r) B− 1

2 +ik

j+ 1
2 , 1

2
(r) + B− 1

2 +ik

j+ 1
2 ,− 1

2
(r)


 . (110)

Notice that as ψ is a symmetric matrix, the numerical matrix C in equation (101) can be chosen
to be the 2×2 unit matrix. Also the columns of the symmetric matrix ψ transform according to
different irreducible representations of SO(3, 1). The first column of equation (110) transforms
with respect to the irrep (ik, 1

2 ) of SO(3, 1) and the second according to (ik, − 1
2 ). These

representations are mirror conjugated to each other.

6.2. The s = 1 case

For spin 1 particle scattering the interaction term of the coupled channel problem again can be
calculated by using the form of the matrices Z and X given in equations (77) and (78). The
result to be used in equation (75), the coupled channel Schrödinger equation, is

Vλν(r) =




j (j+1)

sinh2r

−√
j (j+1) cosh r

sinh2r
0

−√
j (j+1) cosh r

sinh2r

j (j+1)+2
sinh2r

−√
j (j+1) cosh r

sinh2r

0 −√
j (j+1) cosh r

sinh2r

j (j+1)

sinh2r


 . (111)

For the spin 1 case a, b = −1, 0, 1, and it is useful to introduce the variables

α =
√

j

j + 1
β = ik

ik − 1
. (112)
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Then the matrices R and Q have the form

R = 1√
2

( 0 α 0
α−1 0 α−1

0 α 0

)
Q = 1√

2

( 0 αβ 0
(αβ)−1 0 (αβ)−1

0 αβ 0

)
(113)

which satisfy the property R3 = R and Q3 = Q. The associated eigenvalues are

r1 = q1 = 1 r0 = q0 = 0 r−1 = q−1 = −1 (114)

and the spectral projectors are

R1 = 1
2 R(R + E) R0 = (E − R)(E + R) R−1 = 1

2 R(R − E). (115)

Identical equations hold for Qa with R simply replaced by Q. The explicit form of the
projectors is

R±1 = 1
4

( 1 ±√
2α 1

±√
2(α)−1 2 ±√

2(α)−1

1 ±√
2α 1

)
R0 = 1

2

( 1 0 −1
0 0 0

−1 0 1

)
. (116)

In this case to define Qa replace α by αβ. Since R0Q−1 = R−1Q0 = R0Q1 = R1Q0 = 0,
and R0 = Q0, we have R0Q0 = R0 and the wavefunction is

ψk
j1(r) =

√
sinhr

(
R1Q1B1 + R−1Q−1B−1

+

(
R0 + R1Q−1 tanh

r

2
+ R−1Q1 coth

r

2

)
B0

)
(117)

where for brevity

Bµ ≡ B− 1
2 +ik

j+ 1
2 ,µ

(cosh r) µ = −1, 0, +1. (118)

With the matrix C specified by

C ≡
( ik 0 0

0 ik − 1 0
0 0 ik

)
(119)

the matrix ψk
j1;λν(r) is symmetric with components

ψk
j1;1±1(r) = ψk

j1;−1∓1(r) =
√

sinh r

4

[(
ik − 1

2

)
(B1(r) + B−1(r)) + (coth r ± 2ik)B0(r)

]
(120)

ψk
j1;00(r) =

√
sinh r

2

[(
ik − 1

2

)
(B1(r) + B−1(r)) − coth rB0(r)

]
(121)

ψk
j1,10(r) = ψk

j1,01(r) = ψk
j1,−10(r) = ψk

j1,0−1(r) =
√

j (j + 1)

2 sinh r
B0(r). (122)

As a check of our method, in the appendix we show that these wavefunctions satisfy
equation (76), the eigenvalue problem of the other Casimir operator (C2).
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6.3. The s = 3
2 case

In this case the interaction term Vλν(r) is a 4 × 4 matrix of the form


j (j+1)+ 3
2

sinh2r
−

√
3(j+ 3

2 )(j− 1
2 ) cosh r

sinh2r
0 0

−
√

3(j+ 3
2 )(j− 1

2 ) cosh r

sinh2r

j (j+1)+ 7
2

sinh2r
− (2j+1) cosh r

sinh2r
0

0 − (2j+1) cosh r

sinh2r

j (j+1)+ 7
2

sinh2r
−

√
3(j+ 3

2 )(j− 1
2 ) cosh r

sinh2r

0 0 −
√

3(j+ 3
2 )(j− 1

2 ) cosh r

sinh2r

j (j+1)+ 3
2

sinh2r




(123)

as results by calculating the matrices Z and X. The 2s + 1 = 4 eigenvalues for the matrices R

and Q lie in the expected range

− 3
2 � r, q � 3

2 . (124)

The corresponding projectors are

R± 3
2

= ± 1
6 (R − 1

2 E)(R + 1
2 E)(R ± 3

2 E) (125)

R± 1
2

= ∓ 1
2 (R − 3

2 E)(R + 3
2 E)(R ± 1

2 E) (126)

and similarly for Q. Introducing again new variables

α =
√

j + 3
2

j − 1
2

β = ik − 3
2

ik + 1
2

(127)

the Ra projectors are of the form

R± 3
2

= 1
8




1 ±√
3α−1

√
3α−1 ±1

±√
3α 3 ±3

√
3α√

3α ±3 3 ±√
3α

±1
√

3α−1 ±√
3α−1 1


 (128)

R± 1
2

= 1
8




3 ±√
3α−1 −√

3α−1 ∓3
±√

3α 1 ∓1 −√
3α

−√
3α ∓1 1 ±√

3α

∓3 −√
3α−1 ±√

3α−1 3


 . (129)

For the Q projectors we have similar expressions with α again replaced by αβ. Then it is
straightforward to show that

R 3
2
Q 1

2
= R 3

2
Q− 3

2
= R 1

2
Q− 1

2
= R− 1

2
Q− 3

2
= 0. (130)

The expressions obtained from those in equation (130) upon exchange of indices also vanish.
Hence the structure of the wavefunction is

ψk

j 3
2
(r) =

√
sinh r(R 3

2
Q 3

2
B 3

2
(r) + R− 3

2
Q− 3

2
B− 3

2
(r)

+
(
R 3

2
Q− 1

2
tanh

r

2
+ R 1

2
Q 1

2
+ R− 1

2
Q− 3

2
coth

r

2

)
B 1

2
(r)

+
(
R 1

2
Q− 3

2
tanh

r

2
+ R− 1

2
Q− 1

2
+ R− 3

2
Q 1

2
coth

r

r

)
B− 1

2
(r)). (131)

Defining the matrix C as

C =




ik + 1
2 0 0 0

0 ik − 3
2 0 0

0 0 ik − 3
2 0

0 0 0 ik + 1
2


 (132)
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a long but straightforward calculation then yields the final form for the wavefunction
components (for simplicity we use the shorthand notation ψλν instead of ψk

j 3
2 ;λν

(r); moreover

we omit the obvious r argument of the function B(r))

ψ 3
2 ± 3

2
(r) = ψ− 3

2 ∓ 3
2

= 1
8

√
sinh r

(
(ik − 1)(B 3

2
± B− 3

2
) + 3(coth r ± ik)(B 1

2
± B− 1

2
)
)

(133)

ψ 1
2 ± 1

2
(r) = ψ− 1

2 ∓ 1
2

= 1
8

√
sinh r

(
3(ik − 1)(B 3

2
± B− 3

2
) − (3 coth r ∓ ik)(B 1

2
± B− 1

2
)
)

(134)

ψ± 3
2 ± 1

2
(r) = ψ± 1

2 ± 3
2
(r) = 1

4

√
3(j − 1

2 )(j + 3
2 )

sinh r

(B 1
2

+ B− 1
2

)
(135)

ψ± 3
2 ∓ 1

2
(r) = ψ∓ 1

2 ± 3
2
(r) = 1

4

√
3(j − 1

2 )(j + 3
2 )

sinh r

(B 1
2
− B− 1

2

)
. (136)

7. The asymptotic behaviour of the coupled channel wavefunction

In this section we study the asymptotic behaviour of our coupled channel wavefunction as
given by equations (101) and (102). Since this wavefunction, according to equation (103),
can be expressed in terms of the hypergeometric function, of import for us is the asymptotic
behaviour of this function [13].

lim
|z|→∞

F(a, b; c; z) ∼ E(c)E(b − a)

E(a)E(c − a)
(−z)−a +

E(c)E(a − b)

E(a)E(c − b)
(−z)−b . (137)

In our case we have

z(r) = −sinh2r a = j + 1 + ik b = j + 1 − ik cab = j + 3
2 − ωab (138)

where

ωab ≡ 1
2 (ra + qb) − s � a, b � s ra = a qb = b. (139)

It is clear that −s � ω � s as well. Using equations (101)–(103), the asymptotic form is
governed by the corresponding form of ?

kj
raqb

(r), which can be expressed as

lim
r→∞ ?kj

rq(r) ∼ E( 1
2 + ik − ω)

E( 3
2 + j − ω)

e(j+1)r lim
r→∞ F

(
j + 1 + ik, j + 1 − ik; j +

3

2
− ω; −sinh2r

)
(140)

where for simplicity once more we have suppressed the indices a and b of ω. Now we use
equation (137) to obtain

lim
r→∞ ?kj

rq(r) ∼ E( 1
2 − ω + ik)

E( 1
2 − ω − ik)

E(−ik)E( 1
2 − ik)

E(j + 1 − ik)
e−ikr +

E(ik)E( 1
2 + ik)

E(j + 1 + ik)
eikr (141)

which is a complex linear combination of incoming and outgoing plane waves. Denoting the
common factor of this formula by

�(j, ±k) ≡ E(±ik)E( 1
2 ± ik)

E(j + 1 ± ik)
(142)

and the channel dependence factor by

J(ωab, k) ≡ E( 1
2 − ωab + ik)

E( 1
2 − ωab − ik)

(143)
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the asymptotic form of our coupled channel wavefunction can be written as

lim
r→∞ ψk

js(r) ∼
s∑

a,b=−s

RaQbC
[
J(ωab, k)�(j, −k)e−ikr + �(j, k)eikr

]
. (144)

For the spin 1
2 case ωab is the diagonal matrix diag(1/2, −1/2), hence

J

(
1

2
, k

)
= −J

(
−1

2
, k

)
= E(ik)

E(−ik)
(145)

due to the relation E(1 ± ik) = ±ikE(ik). Using the explicit form equation (107) of the
projectors in equation (144) we get

lim
r→∞ ψk

j 1
2
(r) ∼

(
A 1

2 , 1
2
(j, k)eikr A 1

2 − 1
2
(j, k)e−ikr

A− 1
2

1
2
(j, k)e−ikr A− 1

2 − 1
2
(j, k)eikr

)
(146)

where

A 1
2

1
2
(j, k) = A− 1

2 − 1
2
(j, k) = E( 1

2 + ik)

E(j + 1 + ik)
(147)

A− 1
2

1
2
(j, k) = A 1

2 − 1
2
(j, k) = E( 1

2 − ik)

E(j + 1 − ik)
. (148)

For spin 1, although the situation is more complicated, the calculations can be carried
through in a straightforward manner by using the explicit form, equation (116) of the spin 1
projectors. The result is

lim
r→∞ ψk

j1(r) ∼
(

A11(j, k)eikr 0 −A1−1(j, k)e−ikr

0 A11(j, k)eikr + 1+ik
1−ik A1−1(j, k)e−ikr 0

−A1−1(j, k)e−ikr 0 A11(j, k)eikr

)
(149)

where

A11(j, k) = A−1−1(j, k) = E(ik)

E(j + 1 + ik)
A1−1(j, k) = A−11(j, k) = E(−ik)

E(j + 1 − ik)
.

(150)

Notice that in accord with our expectations of section 2 see equations (50) and (51) only the
matrix elements satisfying λ2 = µ2 are different from zero. We have a 2×2 block with |λ| = 1
and a 1 × 1 block with |λ| = 0.

This block structure is also found for the spin 3
2 case. In this case the result is

lim
r→∞ ψk

j 3
2
(r) ∼




A 3
2

3
2
(j, k)eikr 0 0 A 3

2 − 3
2
(j, k)e−ikr

0 A 1
2

1
2
(j, k)eikr A 1

2 − 1
2
(j, k)e−ikr 0

0 A− 1
2

1
2
(j, k)e−ikr A− 1

2 − 1
2
(j, k)eikr 0

A− 3
2

3
2
(j, k)e−ikr 0 0 A− 3

2 − 3
2
(j, k)eikr


 (151)

where

A± 3
2 ± 3

2
(j, k) = A± 1

2 ± 1
2
(j, k) = E(ik)E( 1

2 + ik)

E(j + 1 + ik)
(152)

A± 3
2 ∓ 3

2
(j, k) = E(ik)E( 1

2 − ik)

E(j + 1 − ik)

1
2 − ik
1
2 + ik

(153)

A± 1
2 ∓ 1

2
(j, k) = E(ik)E( 1

2 − ik)

E(j + 1 − ik)

3
2 + ik
3
2 − ik

. (154)

We consider next how one can extract the physical S matrix from these helicity amplitudes.
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8. The scattering matrix

To extract the scattering matrix from the asymptotic form of the coupled channel wavefunction,
we start again with the spin 1

2 case; a case simple enough to gain additional insight for the
higher-spin cases. With equation (146) giving the asymptotic form of the coupled channel
wavefunction, the matrix can be diagonalized with the help of the transform matrix

d
1
2 (π/2) = 1√

2

(
1 −1
1 1

)
(155)

which is just Wigner’s d function corresponding to a rotation by an angle θ = π
2 . The result is

d†ψ∞(r) d =
(

A 1
2

1
2
(j, k)eikr + A 1

2 − 1
2
(j, k)e−ikr 0

0 A 1
2

1
2
(j, k)eikr − A 1

2 − 1
2
(j, k)e−ikr

)
(156)

where the amplitudes are given by equation (148). From this the scattering phase shifts are
readily deduced as

eiδ± = ±E( 1
2 − ik)

E( 1
2 + ik)

E(j + 1 + ik)

E(j + 1 − ik)
. (157)

In this base the scattering matrix is diagonal.
But recall that it was in the base of equation (36) that the explicit form of the Casimir

operators, wavefunctions and their asymptotics were found. This base can be written
alternatively as

Djs

mλ(θ, ϕ) =
∑
λ′

χs
λ′D

s
λ′λ(ϕ, θ, −ϕ)D

j

λm(ϕ, −θ, −ϕ) (158)

which contains two D functions transforming according to the corresponding tensor product
representation. This tensor product can be reduced by using well known product formulas for
D functions [10] to find

Djs

mλ(θ, ϕ) =
∑
λ′

χs
λ′(−1)λ−λ′ ∑

l

〈s − λjλ|l0〉Dl
0m−λ′(ϕ, −θ, −ϕ)〈lm − λ′|s − λ′jm〉.

(159)

Since Dl
0m−λ′(ϕ, θ, −ϕ) is just an ordinary spherical harmonic, this expansion resembles a

rotated version of a usual expansion of angular momentum states. For s = 1
2 we have the two

values l = j ± 1
2 and − 1

2 � λ′ � 1
2 , and so√

2j + 1

4π
Dj 1

2
mλ = 1√

2
(−1)λ− 1

2

(√
j − m + 1

2j + 2
Y

j+ 1
2

m− 1
2
− signλ

√
j + m

2j
Y

j− 1
2

m− 1
2

)
χ

1
2
1
2

+
1√
2

(−1)λ+ 1
2

(√
j + m + 1

2j + 2
Y

j+ 1
2

m+ 1
2

+ signλ

√
j − m

2j
Y

j− 1
2

m+ 1
2

)
χ

1
2

− 1
2
. (160)

Here we have used

Dl
0m−λ′(ϕ, −θ, −ϕ) =

√
4π

2l + 1
Y l

m−λ′(θ, ϕ) (161)

and the specific values of the Clebsch–Gordan coefficients,

〈1/2 ± 1/2j ∓ 1/2|j − 1/20〉 = ± 1√
2

〈1/2 ± 1/2j ∓ 1/2|j + 1/20〉 = 1√
2

. (162)
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In terms of the usual spinor harmonics Yj± 1
2 ,j,m [10] our result takes the following form:

√
2j + 1

4π


 Dj 1

2

m 1
2

Dj 1
2

m− 1
2


 = − 1√

2

(
1 1

−1 1

)(
Yj+ 1

2 ,j,m

Yj− 1
2 ,j,m

)
(163)

which clearly shows that the physical basis is just the base provided by the spinor harmonics.
Notice also that the matrix of base transformation is given in terms of the Wigner rotation
matrix d

1
2 (π/2).

For the spin 1 case we introduce the set of matrices

d1
(π

2

)
= 1

2

( 1 −√
2 1√

2 0 −√
2

1
√

2 1

)
W =

( 1 0 0
0 0 1
0 1 0

)

V = 1√
2

( 1 −1 0
1 1 0
0 0

√
2

) (164)

with which it is straightforward to show that the matrix dWV transforms the 3 × 3 matrices
appearing in the eigenvalue problem of the quadratic Casimir to matrices having the structure
of a direct sum of a 2 × 2 and of a 1 × 1 one. The corresponding blocks describe λ = ±1 and
λ = 0 helicity scattering. The asymptotic form in this new base is

(dWV )†ψ∞(dWV ) ∼
(

A11eikr − A1−1e−ikr 0 0
0 A11eikr + 1+ik

1−ik A1−1eikr 0

0 0 A11eikr + A1−1e−ikr

)

(165)

where the amplitudes are given by equation (150). Again it is evident that the eigenphases are
given by

eiδj
±(k) = ∓E(1 − ik)

E(1 + ik)

E(j + 1 + ik)

E(j + 1 − ik)
eiδj

0 (k) = 1 + ik

1 − ik

E(−ik)

E(ik)

E(j + 1 + ik)

E(j + 1 − ik)
. (166)

For the spin 3
2 case one can proceed similarly. In this case the relevant matrices are

d
3
2 (π/2) = 1

2
√

2




1 −√
3

√
3 −1√

3 −1 −1
√

3√
3 1 1

√
3

1
√

3
√

3 1


 W =




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 (167)

and

V = 1
2




1 −√
3 0 0√

3 1 0 0
0 0 1

√
3

0 0 −√
3 1


 . (168)

This transformation again effects block diagonalization, in this case yielding two 2×2 blocks,
with helicities ± 1

2 and ± 3
2 . The transformed asymptotic wavefunction (dWV )†ψ∞(dWV )

now has the form


A 3
2

3
2

eikr + A 3
2 − 3

2
e−ikr 0 0 0

0 A 1
2

1
2

eikr + A 1
2 − 1

2
e−ikr 0 0

0 0 A 1
2

1
2

eikr − A 1
2 − 1

2
e−ikr 0

0 0 0 A 3
2

3
2

eikr − A 3
2 − 3

2
e−ikr


 (169)
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where the amplitudes are as given in equations (152)–(154). The phase shifts then result from

e
iδj

± 3
2
(k) = ±E( 3

2 − ik)

E( 3
2 + ik)

E(j + 1 + ik)

E(j + 1 − ik)
(170)

e
iδj

± 1
2
(k) = ±

3
2 + ik
3
2 − ik

E( 1
2 − ik)

E( 1
2 + ik)

E(j + 1 + ik)

E(j + 1 − ik)
. (171)

For the arbitrary spin case we can conjecture the general form of the eigenphase shifts of
the scattering matrix. To do this, first notice that the eigenphase shifts for the spin 1

2 , 1 and 3
2

are of the form

eiδj

λ(k) = ∓(−1)2|λ| E(|λ| − ik)

E(|λ| + ik)

E(j + 1 + ik)

E(j + 1 − ik)
ei?(k) j � s (172)

where the meaning of the factor ei?(k) can be clarified as follows. During our calculations we
have assumed that j � s. But we also know that the allowed values for j are |λ|, |λ| + 1, . . . .
For the spin 1

2 case this restriction is already satisfied by the choice j � s. But for s = 1, we
have |λ| = 0, 1. Hence the allowed values for j are 0, 1, 2, . . . for |λ| = 0, and 1, 2, . . . for
|λ| = 1. Having the restriction j � s in this case means that j � 1, which for |λ| = 1 covers
all the cases, but for |λ| = 0 the case j = 0 is missing. It is not hard to show that the j = 0
case yields a one-channel scattering problem with the potential V (r) = 2

sinh2r
from which one

obtains the phase shift −ei?(k) = − 1+ik
1−ik . To within a sign this is precisely the one appearing

in the j � 1 case. Hence if we extend the range of j to cover also the j = 0 case we will be
able to cover all the values j = 0, 1, 2, . . . allowed for the λ = 0 case. Specifically

eiδj

0 (k) = 1 + ik

1 − ik

E(−ik)

E(ik)

E(j + 1 + ik)

E(j + 1 − ik)
j = 0, 1, . . . . (173)

For the spin 3
2 case this structure survives as well, for after putting j = 1

2 in our equations,
we get the interaction term

V (r) = 2

sinh2r




0 0 0 0
0 2 − cosh r 0
0 − cosh r 2 0
0 0 0 0


 . (174)

This 2 × 2 submatrix is exactly solvable and the result is already known from the spin 1
2 case

(put j = 3
2 in equation (105) for the potential of the spin 1

2 case). Hence the eigenphase shift
is given by

eiδj= 1
2 (k) =

3
2 − ik
3
2 + ik

1
2 − ik
1
2 + ik

(175)

and we can again extend our result for all j values as follows:

e
iδj

± 1
2
(k) = ±

3
2 + ik
3
2 − ik

E( 1
2 − ik)

E( 1
2 + ik)

E(j + 1 + ik)

E(j + 1 − ik)
j = 1

2 , 3
2 , . . . . (176)

We have no proof of the conjecture that this adjustment of the phase ei?(k) can consistently
be done for all values of the spin, but we surmise

eiδj

λ(k) = ∓(−1)2|λ|ei?(k) E(|λ| − ik)

E(|λ| + ik)

E(j + 1 + ik)

E(j + 1 − ik)
j = |λ|, |λ| + 1, . . . (177)

where ei?(k) is a phase factor needed for the j � s cases.
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We close this section with a few comments on the structure of the asymptotic form of our
coupled channel wavefunction as given by equation (144) valid for arbitrary spin s. As we see
from this expression the important terms fixing the channel structure are the matrices S and R

satisfying equations (89) and (90). It is not hard to prove that the solution of the eigenvalue
problem R?λa = ra?λa is the expression

?λa = 1√
(j − λ)!(j + λ)!(s − λ)!(s + λ)!

Ka

(
s + λ; 1

2
, 2s

)
− s � a � s − s � λ � s

(178)

where Ka(s + λ; 1
2 , 2s) is the Krawtchouk polynomial in s + λ of degree a with parameter 1

2
as discussed in detail in [12]. Using this result the matrices Ra and Qa can be expressed with
these polynomials. Exploiting some well known properties of the Krawtchouk polynomials in
the asymptotic formula (144) the phase shifts for arbitrary spin s in principle can be calculated.

Another way of looking at our wavefunction (144) is provided by the observation of
section 1 that our generators J , M and xµ provide a realization of the Poincaré algebra.
Indeed, these generators are just the ones characterized by the (1, s) representation of the
Poincaré group induced by the unitary irreducible representation of the group SO(3) leaving
the vector x&µ ≡ (1, 0, 0, 0) invariant. Our (74) wavefunction living on the upper sheet
of the double-sheeted hyperboloid is just the one transforming according to this induced
representation. What we did in the previous sections was just providing this function with
labels corresponding to the Lorentz subgroup, SO(3, 1). More precisely we were interested
in characterizing the wavefunction with eigenvalues of the SO(3, 1) Casimir operators. This
procedure is just the subduction of the (1, s) Poincaré representation to the SO(3, 1) subgroup
charcterized by the labels (j0, j1). Using this information we should be able to obtain an
alternative derivation for the asymptotic form of our wavefunction, and the scattering matrix
by purely group theoretical manipulations3. These ideas for giving a possible proof for our
conjecture will be followed in a subsequent publication.

9. Conclusions

In this paper we have investigated an exactly solvable coupled channel scattering problem with
SO(3, 1) symmetry describing the helicity scattering of a particle with spin s. The existence
of this exactly solvable problem is based on a special coordinate realization in terms of matrix-
valued differential operators. Though the realization is in terms of (2s + 1) × (2s + 1) spin
matrices, the number of independent channels turns out not to be 2s + 1. Indeed we have
shown that the Casimir operators, equations (75) and (76), describe a collection of scattering
problems where the channels are labelled by the helicity projections ±λ of the spin s. In this
picture the scattering problems are only one- or two-channel ones depending on the value of
the helicity projection.

We have given a detailed discussion of the group theoretical meaning of the coupled
channel wavefunction, showing that this wavefunction is a construct of irreducible unitary
representations of the SO(3, 1) algebra. The two different labels of the irreps, k and λ, are
related to the scattering energy and the helicity (which gives rise to the channel structure)
respectively. We also have shown that the coupled channel wavefunction is a matrix-valued
function with definite group theoretical properties. It provides a matrix-valued generalization
of known special functions, the matrix-valued hyperbolic Jacobi polinomials in particular.

We have calculated the scattering matrix for the special values s = 1
2 , 1, 3

2 , and conjectured
the result for general s. We demonstrated that for the description of the coupled channel
3 We are grateful to the referee for drawing our attention to this point.
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problem with SO(3, 1) symmetry both of the independent Casimir operators must be used.
One leads to a Schrödinger-like equation describing a collection of helicity scattering problems,
while the other behaves like a Dirac-like operator providing the subsidiary conditions amenable
for an exact solution. The Schrödinger-like operator, equation (75), and the Dirac-like operator,
equation (76), are related to each other similarly to the Hamiltonian (a second-order differential
operator) and the supercharge (a first-order differential operator) in supersymmetric quantum
mechanics.

As far as AST is concerned these results clearly show that a generalization is needed
to describe a coupled channel problem. The first step may be to generalize the theory by
allowing more general irreducible unitary representations into the formalism. The extra labels
corresponding to the eigenvalues of the extra Casimir operators have to be related somehow to
the internal degrees of freedom of the coupled channel scattering process. A further possible
step could be to identify the analogue of the so called ‘Euclidean connection’ [1] for such
generalized representations. As was shown and used in a different context in section 3 the
Euclidean algebra e(3) also has two independent Casimir operators. Since this algebra arises
as a contraction of the SO(3, 1) algebra, in principle one should be able to recover our results
via a purely algebraic (i.e. realization-independent) method. There is an alternative treatment
as given by Kerimov [14] using the intertwining operator method. That approach differs from
the spirit of AST, which formulates the theory in terms of group contractions. Nevertheless
the functional form of Kerimov’s result coincides with that conjectured in equation (177), and
is exact for the s = 1

2 , 1, 3
2 cases. We also hinted at an approach for establishing a proof for

our conjectured functional form of the scattering matrices valid for arbitrary spin. One should
also be able to derive this general class of scattering matrices entirely within the framework of
AST. Such interesting generalizations we shall address in a subsequent publication.
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Appendix

In this appendix we show that the wavefunction for the spin 1 case is indeed an eigenfunction
of C2. From equation (76), the eigenvalue problem of C2, the equations to be satisfied in the
spin 1 case are(

i
d

dr
+ k

)
ψ±1±1(r) = iα

2 sinh r
ψ0±1

(
i

d

dr
− k

)
ψ±1∓1(r) = iα

2 sinh r
ψ0∓1 (179)

and

d

dr
ψ−10(r) = α

2 sinh r
ψ00

iα

2 sinh r
[ψ−1±1(r) − ψ1±1(r)] = ±kψ01(r) (180)

where α is given by equation (112). Moreover, we have the conditions

ψ10(r) = ψ−10(r) = ψ01(r) = ψ0−1(r). (181)

We check that the explicit wavefunctions given in equations (120)–(122) obtained from the
solution of the eigenvalue problem for C1 do indeed satisfy these equations.
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From equations (120)–(122) it is clear that conditions of equation (181) are satisfied. To
show that the remaining conditions, equation (179) and equation (180), are satisfied as well,
we have to recall some recursion relations for the Bl

mn(r) functions [12]. The relations needed
are

j + 1
2 − µ cosh r

sinh r
Bµ(r) = 1

2

(
−1

2
− µ + ik

)
Bµ+1(r) − 1

2

(
−1

2
+ µ + ik

)
Bµ−1(r) (182)

and
d

dr
Bµ(r) = 1

2

(
−1

2
− µ + ik

)
Bµ+1(r) +

1

2

(
−1

2
+ µ + ik

)
Bµ−1(r). (183)

Here we have used the shorthand notation adopted with equation (118). Using these recursion
relations a straightforward calculation shows that equations (179) and (180) are really satisfied
as we claimed. With this method it is straightforward to check that the wavefunctions obtained
for the spin 1

2 and spin 3
2 cases also satisfy equation (76).

References

[1] Arima F and Iachello F 1976 Ann. Phys., NY 93 253
Arima A and Iachello F 1978 Ann. Phys., NY 111 201
Arima A and Iachello F 1979 Ann. Phys., NY 123 468

[2] Wu J, Alhassid Y and Iachello F 1987 Ann. Phys., NY 173 68
[3] Alhassid Y and Iachello F 1989 Nucl. Phys. A 501 585
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